2D NumPy Arrays:
- type(np_name)
- 2D NumPy Array
- np_name.shape( )
- Subsetting using index positions
Basic Statistics:
- np.mean( )
- np.median( )
- np.corrcoef( )
- np.std( )
- Generate data using np.random.normal( ) and np.column_stack( )
there’s np.sum( ) , np.sort( ) and more…
Note: All values in arrays need to be the same data type to have a homogeneous array.
What I learnt:
2D NumPy Arrays:
Example: we start with having 2 separate arrays
import numpy as np
np_height=np.array([1.73, 1.68, 1.71, 1.89, 1.79])
np_weight=np.array([65.0, 59.2, 63.4, 88.5, 65.23])
- type( ) shows type of data. Here ndarray means N-dimensional array.
import numpy as np type(np_height) type(np_weight)
Output:
numpy.ndarray
- 2D NumPy Array
np_2d=np.array([1.73, 1.68, 1.71, 1.89, 1.79],[65.0, 59.2, 63.4, 88.5, 65.23])
Output:
array([[1.73, 1.68, 1.71, 1.89, 1.79],[65.0, 59.2, 63.4, 88.5, 65.23]])
- .shape shows number of rows and columns
np_2d.shape
Output:
'''shows us 2 rows 5 columns in the 2D NumPy array''' (2,5)
- Subsetting using index positions to generate values from specified rows and columns
- item in index one of this 2d array is the first (nested) array
np_2d[0]
Output:
array([1.73, 1.68, 1.71, 1.89, 1.79])
- indicate row index, then column index, to generate one value
'''get the item in row index 0 and column index 2''' np_2d[0][2]
'''get the item in row index 0 and column index 2''' np_2d[0,2]
Output:
1.71
- we can indicate row and column ranges and generate (2d) arrays as output
'''get the items in both rows and column index 1 and 2''' np_2d[:,1:3]
Output:
# we get a 2d array with 2 rows and 2 columns as the output array([[1.68, 1.71],[59.2, 63.4]])
'''get the items in second rows and all columns''' np_2d[1,:]
Output:
# we get a 1d array with 1 rows as the output array([65.0, 59.2, 63.4, 88.5, 65.23])
- item in index one of this 2d array is the first (nested) array
Basic Statistics
- np.mean( ) gets the average value from selected data
np.mean(np_city[:,0])
Output:
1.7472
-
np.median( ) gets the median value from selected data
- np.corrcoef( ) for correlation coefficient to see relationship between fields
np.corrcoef(np_city[:,0],np_city[:,1])
- np.std( ) to find standard deviation
np.std(np_city[:,0])
- Generate data using np.random.normal(distribution mean, distribution standard deviation, no. of samples) and np.column_stack( )
height=np.round(np.random.normal(1.75,0.20,5000),2) weight=np.round(np.random.normal(60.32,15,5000),2) np_city=np.column_stack((height,weight))